RFID RC522 Raspberry PI 2 Windows IOT

Je cherche un moyen d’utiliser la RFID “RC522” sur un Raspberry Pi 2.0 sous Windows IOT.

Ce n’est bien sûr pas compatible officiellement …

Le site officiel (carte de démonstration OM5577) est trop cher en France (je n’ai trouvé aucun revendeur qui l’ait vendu sans beaucoup de frais d’expédition (le coût total avoisine les 80 $)).

Le RC522 est bon marché (<10 $). Cela fonctionne très bien sur Arduino et sur Raspberry Pi 2.0 sur Linux. Mais malheureusement pas encore sous Windows IOT.

En fait, j’utilise un arduino comme pont … Ce n’est pas une solution optimale; mais fonctionne bien et coûte toujours la moitié du prix que le OM5577.

J’ai trouvé ce projet et essayé de les convertir en un projet VS (Visual C ++) avec Windows IOT SIP et IO … J’échoue lamentablement …

Dans mon rêve, je pourrais utiliser cet appareil en C # avec la classe IOT standard “ProximityDevice”.

Avez-vous une idée pour moi?

Merci d’avance.

J’ai finalement trouvé une solution.

Je n’ai pas réussi dans la portabilité d’Arudino; J’ai donc utilisé ce projet comme sharepoint départ.

Le projet est écrit en C #. Je viens d’adapter le code pour Windows IOT GPIO et SPI. Un ça marche!

Principale

var mfrc = new Mfrc522(); await mfrc.InitIO(); while (true) { if (mfrc.IsTagPresent()) { var uid = mfrc.ReadUid(); mfrc.HaltTag(); } } 

Bibliothèque Mfrc522Lib.cs (tout en un)

 using System; using System.Collections.Generic; using System.Threading; using System.Threading.Tasks; using Windows.Devices.Enumeration; using Windows.Devices.Gpio; using Windows.Devices.Spi; namespace Mfrc522Lib { public static class Registers { private const byte bitFraming = 0x0D; private const byte comIrq = 0x04; private const byte comIrqEnable = 0x02; private const byte command = 0x01; private const byte control = 0x0C; private const byte error = 0x06; private const byte fifoData = 0x09; private const byte fifoLevel = 0x0A; private const byte mode = 0x11; private const byte rxMode = 0x13; private const byte timerMode = 0x2A; private const byte timerPrescaler = 0x2B; private const byte timerReloadHigh = 0x2C; private const byte timerReloadLow = 0x2D; private const byte txAsk = 0x15; private const byte txControl = 0x14; private const byte txMode = 0x12; private const byte version = 0x37; public static byte BitFraming { get { return bitFraming; } } public static byte ComIrq { get { return comIrq; } } public static byte ComIrqEnable { get { return comIrqEnable; } } public static byte Command { get { return command; } } public static byte Control { get { return control; } } public static byte Error { get { return error; } } public static byte FifoData { get { return fifoData; } } public static byte FifoLevel { get { return fifoLevel; } } public static byte Mode { get { return mode; } } public static byte RxMode { get { return rxMode; } } public static byte TimerMode { get { return timerMode; } } public static byte TimerPrescaler { get { return timerPrescaler; } } public static byte TimerReloadHigh { get { return timerReloadHigh; } } public static byte TimerReloadLow { get { return timerReloadLow; } } public static byte TxAsk { get { return txAsk; } } public static byte TxControl { get { return txControl; } } public static byte TxMode { get { return txMode; } } public static byte Version { get { return version; } } } public static class PiccResponses { private const ushort answerToRequest = 0x0004; private const byte selectAcknowledge = 0x08; private const byte acknowledge = 0x0A; public static byte Acknowledge { get { return acknowledge; } } public static byte SelectAcknowledge { get { return selectAcknowledge; } } public static ushort AnswerToRequest { get { return answerToRequest; } } } public static class PiccCommands { private const byte anticollision_1 = 0x93; private const byte anticollision_2 = 0x20; private const byte authenticateKeyA = 0x60; private const byte authenticateKeyB = 0x61; private const byte halt_1 = 0x50; private const byte halt_2 = 0x00; private const byte read = 0x30; private const byte request = 0x26; private const byte select_1 = 0x93; private const byte select_2 = 0x70; private const byte write = 0xA0; public static byte AuthenticateKeyA { get { return authenticateKeyA; } } public static byte AuthenticateKeyB { get { return authenticateKeyB; } } public static byte Halt_1 { get { return halt_1; } } public static byte Halt_2 { get { return halt_2; } } public static byte Read { get { return read; } } public static byte Request { get { return request; } } public static byte Select_1 { get { return select_1; } } public static byte Select_2 { get { return select_2; } } public static byte Write { get { return write; } } public static byte Anticollision_1 { get { return anticollision_1; } } public static byte Anticollision_2 { get { return anticollision_2; } } } public static class PcdCommands { private const byte idle = 0x00; private const byte mifareAuthenticate = 0x0E; private const byte transceive = 0x0C; public static byte Idle { get { return idle; } } public static byte MifareAuthenticate { get { return mifareAuthenticate; } } public static byte Transceive { get { return transceive; } } } public class Uid { public byte Bcc { get; private set; } public byte[] Bytes { get; private set; } public byte[] FullUid { get; private set; } public bool IsValid { get; private set; } internal Uid(byte[] uid) { FullUid = uid; Bcc = uid[4]; Bytes = new byte[4]; System.Array.Copy(FullUid, 0, Bytes, 0, 4); foreach (var b in Bytes) { if (b != 0x00) IsValid = true; } } public sealed override bool Equals(object obj) { if (!(obj is Uid)) return false; var uidWrapper = (Uid)obj; for (int i = 0; i < 5; i++) { if (FullUid[i] != uidWrapper.FullUid[i]) return false; } return true; } public sealed override int GetHashCode() { int uid = 0; for (int i = 0; i < 4; i++) uid |= Bytes[i] << (i * 8); return uid; } public sealed override string ToString() { var formatString = "x" + (Bytes.Length * 2); return GetHashCode().ToString(formatString); } } public sealed class Mfrc522 { public SpiDevice _spi { get; private set; } public GpioController IoController { get; private set; } public GpioPin _resetPowerDown { get; private set; } /* Uncomment for Raspberry Pi 2 */ private const string SPI_CONTROLLER_NAME = "SPI0"; private const Int32 SPI_CHIP_SELECT_LINE = 0; private const Int32 RESET_PIN = 25; internal async Task InitIO() { try { IoController = GpioController.GetDefault(); _resetPowerDown = IoController.OpenPin(RESET_PIN); _resetPowerDown.Write(GpioPinValue.High); _resetPowerDown.SetDriveMode(GpioPinDriveMode.Output); } /* If initialization fails, throw an exception */ catch (Exception ex) { throw new Exception("GPIO initialization failed", ex); } try { var settings = new SpiConnectionSettings(SPI_CHIP_SELECT_LINE); settings.ClockFrequency = 1000000; settings.Mode = SpiMode.Mode0; String spiDeviceSelector = SpiDevice.GetDeviceSelector(); IReadOnlyList devices = await DeviceInformation.FindAllAsync(spiDeviceSelector); _spi = await SpiDevice.FromIdAsync(devices[0].Id, settings); } /* If initialization fails, display the exception and stop running */ catch (Exception ex) { throw new Exception("SPI Initialization Failed", ex); } Reset(); } public void Reset() { _resetPowerDown.Write(GpioPinValue.Low); System.Threading.Tasks.Task.Delay(50).Wait(); _resetPowerDown.Write(GpioPinValue.High); System.Threading.Tasks.Task.Delay(50).Wait(); // Force 100% ASK modulation WriteRegister(Registers.TxAsk, 0x40); // Set CRC to 0x6363 WriteRegister(Registers.Mode, 0x3D); // Enable antenna SetRegisterBits(Registers.TxControl, 0x03); } public bool IsTagPresent() { // Enable short frames WriteRegister(Registers.BitFraming, 0x07); // Transceive the Request command to the tag Transceive(false, PiccCommands.Request); // Disable short frames WriteRegister(Registers.BitFraming, 0x00); // Check if we found a card return GetFifoLevel() == 2 && ReadFromFifoShort() == PiccResponses.AnswerToRequest; } public Uid ReadUid() { // Run the anti-collision loop on the card Transceive(false, PiccCommands.Anticollision_1, PiccCommands.Anticollision_2); // Return tag UID from FIFO return new Uid(ReadFromFifo(5)); } public void HaltTag() { // Transceive the Halt command to the tag Transceive(false, PiccCommands.Halt_1, PiccCommands.Halt_2); } public bool SelectTag(Uid uid) { // Send Select command to tag var data = new byte[7]; data[0] = PiccCommands.Select_1; data[1] = PiccCommands.Select_2; uid.FullUid.CopyTo(data, 2); Transceive(true, data); return GetFifoLevel() == 1 && ReadFromFifo() == PiccResponses.SelectAcknowledge; } internal byte[] ReadBlock(byte blockNumber, Uid uid, byte[] keyA = null, byte[] keyB = null) { if (keyA != null) MifareAuthenticate(PiccCommands.AuthenticateKeyA, blockNumber, uid, keyA); else if (keyB != null) MifareAuthenticate(PiccCommands.AuthenticateKeyB, blockNumber, uid, keyB); else return null; // Read block Transceive(true, PiccCommands.Read, blockNumber); return ReadFromFifo(16); } internal bool WriteBlock(byte blockNumber, Uid uid, byte[] data, byte[] keyA = null, byte[] keyB = null) { if (keyA != null) MifareAuthenticate(PiccCommands.AuthenticateKeyA, blockNumber, uid, keyA); else if (keyB != null) MifareAuthenticate(PiccCommands.AuthenticateKeyB, blockNumber, uid, keyB); else return false; // Write block Transceive(true, PiccCommands.Write, blockNumber); if (ReadFromFifo() != PiccResponses.Acknowledge) return false; // Make sure we write only 16 bytes var buffer = new byte[16]; data.CopyTo(buffer, 0); Transceive(true, buffer); return ReadFromFifo() == PiccResponses.Acknowledge; } protected void MifareAuthenticate(byte command, byte blockNumber, Uid uid, byte[] key) { // Put reader in Idle mode WriteRegister(Registers.Command, PcdCommands.Idle); // Clear the FIFO SetRegisterBits(Registers.FifoLevel, 0x80); // Create Authentication packet var data = new byte[12]; data[0] = command; data[1] = (byte)(blockNumber & 0xFF); key.CopyTo(data, 2); uid.Bytes.CopyTo(data, 8); WriteToFifo(data); // Put reader in MfAuthent mode WriteRegister(Registers.Command, PcdCommands.MifareAuthenticate); // Wait for (a generous) 25 ms System.Threading.Tasks.Task.Delay(25).Wait(); } protected void Transceive(bool enableCrc, params byte[] data) { if (enableCrc) { // Enable CRC SetRegisterBits(Registers.TxMode, 0x80); SetRegisterBits(Registers.RxMode, 0x80); } // Put reader in Idle mode WriteRegister(Registers.Command, PcdCommands.Idle); // Clear the FIFO SetRegisterBits(Registers.FifoLevel, 0x80); // Write the data to the FIFO WriteToFifo(data); // Put reader in Transceive mode and start sending WriteRegister(Registers.Command, PcdCommands.Transceive); SetRegisterBits(Registers.BitFraming, 0x80); // Wait for (a generous) 25 ms System.Threading.Tasks.Task.Delay(25).Wait(); // Stop sending ClearRegisterBits(Registers.BitFraming, 0x80); if (enableCrc) { // Disable CRC ClearRegisterBits(Registers.TxMode, 0x80); ClearRegisterBits(Registers.RxMode, 0x80); } } protected byte[] ReadFromFifo(int length) { var buffer = new byte[length]; for (int i = 0; i < length; i++) buffer[i] = ReadRegister(Registers.FifoData); return buffer; } protected byte ReadFromFifo() { return ReadFromFifo(1)[0]; } protected void WriteToFifo(params byte[] values) { foreach (var b in values) WriteRegister(Registers.FifoData, b); } protected int GetFifoLevel() { return ReadRegister(Registers.FifoLevel); } protected byte ReadRegister(byte register) { register <<= 1; register |= 0x80; var writeBuffer = new byte[] { register, 0x00 }; return TransferSpi(writeBuffer)[1]; } protected ushort ReadFromFifoShort() { var low = ReadRegister(Registers.FifoData); var high = (ushort)(ReadRegister(Registers.FifoData) << 8); return (ushort)(high | low); } protected void WriteRegister(byte register, byte value) { register <<= 1; var writeBuffer = new byte[] { register, value }; TransferSpi(writeBuffer); } protected void SetRegisterBits(byte register, byte bits) { var currentValue = ReadRegister(register); WriteRegister(register, (byte)(currentValue | bits)); } protected void ClearRegisterBits(byte register, byte bits) { var currentValue = ReadRegister(register); WriteRegister(register, (byte)(currentValue & ~bits)); } private byte[] TransferSpi(byte[] writeBuffer) { var readBuffer = new byte[writeBuffer.Length]; _spi.TransferFullDuplex(writeBuffer, readBuffer); return readBuffer; } } } 

Schéma

Schéma

Comme il utilise SPI, il ne devrait pas y avoir de problème de compatibilité matérielle. Si vous ne souhaitez pas traduire le code Arduino existant, Microsoft dispose de certaines technologies vous permettant d’utiliser les esquisses et les bibliothèques Arduino existantes. Vous pouvez en savoir plus à ce sujet ici: http://ms-iot.github.io/content/en-US/win10/ArduinoWiringProjectGuide.htm

Ajout: Si vous voulez voir l’UID en tant que chaîne représentant les caractères hexadécimaux, vous pouvez utiliser la partie suivante de la partie TagIsPresent :

 var uid = mfrc.ReadUid(); ssortingng txt_Result = ""; foreach (byte byt in uid.FullUid) { txt_Result = txt_Result + byt.ToSsortingng("x2"); } mfrc.HaltTag();